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Abstract

Scheduling often interacts with execution. When the sched-
uler is developing a schedule, real time (execution) pro-
ceeds. Usually a scheduler cannot modify portions of the
schedule expected to start execution prior to the scheduler’s
expected completion. In deployed systems, often little effort
is spent on predicting scheduler runtime and instead an ex-
tremely conservative, simple model is used, resulting in loss
of performance as less of the schedule can be updated.

We develop predictive model(s) of scheduler runtime and
use these models to improve scheduler and execution per-
formance. We present several models of scheduler runtime
based on a scheduler developed for NASA’s next Mars rover,
the M2020 rover Perseverance. The models consider algo-
rithmic complexity, characteristics of the input plan, and
prior runtime data. First, we show how these still relatively
unsophisticated models can more accurately predict sched-
uler runtime compared to the static conservative baseline be-
ing used for the M2020 onboard scheduler. Second, we show
how the more accurate scheduler runtime models’ tighter
(shorter) runtime predictions enable better scheduler perfor-
mance as measured by makespan and percentage of activi-
ties executed. Finally, we discuss a number of future steps to
further advance this line of work.

Background

The M2020 onboard scheduler (Rabideau and Benowitz
2017) is intended to handle execution variations throughout
a sol (Martian day) by changing the plan as needed to re-
act to deviations from the predicted conditions. Because the
rover has extremely limited CPU resources ! the schedul-
ing and execution algorithms are relatively simple. However
(re)scheduling takes a significant amount of time; it is con-
servatively allocated 60 seconds onboard the rover. As the
scheduler is expected to be invoked approximately 15 times
per sol this amount of time can significantly impact rover
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'The RAD750 processor used by the Mars 2020 rover has mea-
sured performance in the 200-300 MIPS range. In comparison
a 2016 Intel Core i7 measured over 300,000 MIPS or over 1000
times faster). Furthermore, the onboard scheduler is only allocated
a portion of the computing cycles onboard the RAD750. Therefore
a typical laptop has several thousand times more compute power
than allocated to the M2020 onboard scheduler

efficiency. A typical martian sol has about 5-7 hours of pro-
ductive time between receiving inputs from the ground and
end of execution, of which half might be spent sleeping,
so usable time is close to 183 minutes. Thus, 15 minutes
spent rescheduling would use a non-negligible 8% of pro-
ductive time of a multi billion dollar space mission. There-
fore mitigating the effect of the rescheduling time on rover
productivity is important to the mission. Previous work has
described the M2020 onboard scheduling algorithms (Ra-
bideau and Benowitz 2017; Chi, Chien, and Agrawal 2019;
Agrawal et al. 2019) as well as the integration of schedul-
ing into execution (Chi et al. 2018). We build upon this prior
work to study gains from a more informed model of sched-
uler runtime.

Rover Schedules

We adopt the schedule representation previously described
in (Rabideau and Benowitz 2017). In this formulation the
scheduler is presented with a list of activities Ay, ...A, or-
dered by priority. Activity A; has a predicted duration and
a set of constraints including unit resources, dependencies
(activities that must complete before A; begins), and exe-
cution time windows. There are two unusual aspects of this
scheduling problem. First, activities may require thermal ac-
tivities (preheats and maintenance) to be scheduled before
and concurrently with the activity. Second, the scheduler
must manage the wake/sleep schedule for the rover where
most activities require the rover to be awake during their ex-
ecution, a small number require that the rover must be asleep
during their execution, and that the rover manages energy by
trying to sleep as much as possible to conserve energy (Chi,
S.Chien, and Agrawal 2020).

However the research in this paper applies to a wide range
of schedulers and scheduling problems. Specifically we ad-
dress the situation where: (1) the time required to resched-
ule is significant compared to the overall productive sched-
ule time; (2) it is possible to (with some accuracy) predict
the scheduler runtime from data available prior to invoca-
tion; (3) imperfect runtime predictions can be handled; and
(4) more precise runtime predictions can be leveraged by the
scheduler to produce better schedules.

In this paper we use two different types of plans: synthetic
plans and sol types. Both are valid inputs to the scheduler,
but synthetic plans are generated to demonstrate a specific



behavior, while sol types are designed to approximate plans
the M2020 project will use during operations. Synthetic
plans’ activities have unit resource constraints so that activ-
ities cannot occur at the same time, but activities have no
other constraints unless explicitly mentioned. Meanwhile,
sol types are more complex and follow certain patterns; they
are also designed such that all activities should execute if
starting at a high state of charge (SOC) energy level.

Schedule Execution

We presume that both flexible execution and rescheduling
are used to address activities taking more or less time than
their expected duration to complete. If an activity completes
earlier that the scheduled completion time by greater than a
certain threshold, it is said that an event has occurred, and
rescheduling is triggered. Likewise if an activity completes
later than its scheduled completion time, an event is also de-
clared and rescheduling is triggered. 2

An important design decision is what to execute while the
scheduler is rescheduling (and the corresponding decision
of what the scheduler should assume executed while it is
rescheduling). For this we use the concept of a commit win-
dow (discussed later).

When there are smaller variations in execution than war-
rant rescheduling, we assume some form of flexible execu-
tion (FE) can modify the schedule (Agrawal, Chi, and Chien
2019). FE uses a directed acyclic graph of activities within
a predefined temporal window to capture their relative or-
dering. Then if an activity ends early or late, FE can pull or
push activities, respectively, within this window. FE respects
the execution windows of activities and required states but
does not fully model more complex resources (such as en-
ergy) and presumes that minor variations in timing will not
significantly affect such resources.

When there are larger variations in execution, then
rescheduling is required to generate a new schedule to ac-
count for the changed context.

In order to model uncertain actual activity execution du-
rations, we use data from the Mars Science Laboratory rover
operations (Gaines et al. 2016a; 2016b) to vary the durations
of activities according to normal distributions with a mean
equal to approximately 70% of the activity’s predicted dura-
tion and variance in order to achieve a pre-designated pro-
portion of activities taking longer than their predicted dura-
tion.

Scheduler and Execution Performance Metrics

We evaluate schedule performance using two metrics - the
number of activities executed and schedule makespan. The
number of activities executed is simply the number of the ac-
tivities specified in the problem that are successfully sched-
uled and then executed within their constraints (state, execu-
tion window, etc.).

The second schedule execution metric is makespan. The
makespan of a schedule is the difference between the start
of the earliest activity in the schedule and the end of the

2This is described as event-driven rescheduling, as compared to
rescheduling that occurs at a fixed frequency (Chi et al. 2018).

latest activity. We slightly modify this calculation to ignore
certain activities that are fixed in time, such as communica-
tions passes. We use makespan as a proxy for efficiency of
the schedule (a shorter schedule usually means less awake
time and therefore less energy consumption). But more im-
portantly a shorter schedule means that schedule activities
could be lengthened (r.g. rover drive activity) or more activ-
ities can be added (e.g. science observations).

Makespan gain is the difference between the makespan of
the original schedule and the makespan of the final executed
schedule. Because in rover operations conservative (e.g.
longer activity duration) models are used for scheduling,
execution typically results in a shorter (smaller) makespan.
Therefore we define larger makespan gain as a larger desired
shortening.

Commit window

The purpose of a commit window is to (a) determine what
activities to execute while the scheduler is rescheduling and
(b) to specify the context (e.g. activities will be executed)
prior to the new scheduled activities that the scheduler re-
turns. One common policy is to set the commit window to
span from the time of scheduler invocation to a conservative
estimate of when the scheduler will complete. This means
that (a) any activities in the prior schedule with scheduled
start times in this interval are eligible for execution when
their start times occur; (b) these activities scheduled to start
within the commit window are the context (e.g. to determine
state and resource values) for generation of the new sched-
ule. Additionally, any activities with start times beyond the
end of the commit window will be considered for reschedul-
ing and the scheduler may only reschedule activities to start
later than the end of the commit window. While such a con-
servative commit window prevents conflicts between the ex-
isting schedule and the newly generated schedule while the
scheduler is running, it often also results in loss of perfor-
mance as it limits which activities can be rescheduled, as
shown in the empirical results section.

Commit Window

] T

tsc start tsc_end

Figure 1: The scheduler is invoked at time ts. stqrt be-
cause Activity A ends early. The scheduler completes at time
tsc.end but it cannot reschedule Activity B to start earlier be-
cause the start time of B is within the commit window, so it
will execute as per the prior schedule. The earliest the sched-
uler can reschedule Activity C to start is at the end of the
commit window.

Prior work has noted that under the assumptions that
the actual scheduler runtime is the predicted scheduler run-
time and the commit window is set to this time, a shorter



scheduler runtime and commit window resulted in higher
makespan gain for a range of rescheduling invocation and
flexible execution methods (Figure 2) (Chi et al. 2018).
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Figure 2: For all the methods explored in (Agrawal, Chi, and

Chien 2019), a lower predicted scheduler runtime (and thus
smaller commit window) resulted in more makespan gain.
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Figure 3: If we assume the scheduler finishes earlier than the
commit window, FE can recoup makespan gain during the
rest of the commit window. FE Extended Push and Extended
Veto are variations of the FE algorithm but they behave the
same when activities only end early, resulting in overlapping
results and only 4 lines in the plot.

This is not surprising as longer scheduler runtimes prevent
the scheduler from pulling activities forward when preced-
ing activities complete early.

Note also that if the commit window is longer than the ex-
pected scheduler runtime, or if the expected scheduler run-
time is longer than the actual scheduler runtime, flexible ex-
ecution can take advantage of some of the time gained from
early scheduler completion by pulling eligible activities ear-
lier. In previous research, this area was explored by simu-
lating “actual scheduler runtime” as a normal distribution
where the mean was some fraction of a fixed commit win-
dow (Agrawal, Chi, and Chien 2019). FE was somewhat ef-
fective at handling these cases where the scheduler finished
early. When we simulated a smaller actual scheduler run-
time, FE recouped more makespan gain than with a larger
actual scheduler runtime (Figure 3).

In this paper, we consider the scheduler runtime and com-
mit window in more depth. We can model scheduler runtime
in the context of execution more accurately than in previous
work. Once we have a better idea of its actual distribution,
we can use this model to make a smarter commit window.
Furthermore, we can show that in certain cases, a smarter
commit window yields better results in execution.

Modeling Scheduler Runtime

In the previous research described above, the actual sched-
uler runtime was modeled as a normal distribution with a
mean as a fraction of the predicted scheduler runtime (and
the commit window). We build on this prior work to develop
an explicit predictive model of scheduler runtime based on
empirical analysis. We develop models of the scheduler run-
time through previous research on the scheduling algorithm,
observations from synthetic plans, and tests on sol types.

Inspection of the scheduling algorithm and its implemen-
tation can suggest a model of the algorithm’s runtime. This
scheduler has been analyzed independent of the context of
execution, both theoretically and empirically. (Chi, Chien,
and Agrawal 2019) found the worst-case runtime of the al-
gorithm to be O(n?), where n is the number of activities in
the input plan. The paper also notes that the problem is eas-
ier when the incoming SOC is higher. The worst case perfor-
mance is when the incoming SOC is lower and the scheduler
has to repeatedly schedule a group of activities, which then
enforces that the rover will sleep to generate power for an-
other group of activities, then schedule the next group of
activities. As the scheduler schedules each activity group, it
must project forward the energy timelines, the most com-
putationally demanding resource timelines, repeatedly. The
final energy timelines have a repeated pattern of (a) a group
of activities use energy leaving the rover with low energy,
(b) the rover sleeps to regain a small amount of energy, (c)
another small group of activities leaving the rover with no
energy, (d) rover sleeps to regain energy, repeatedly. This
pattern is described as sawtoothing due to the shape of the
energy timeline.

Using Synthetic Plans to Observe Scheduler
Runtime

While the worst-case runtime may be O(n?) as described
by (Chi, Chien, and Agrawal 2019), measuring the runtime
of the scheduler on synthetic plans shows how different in-
puts can drastically change the runtime complexity. By not-
ing which synthetic cases yield what complexity, we justify
our expectations of scheduler runtime on mission-realistic
cases with sol types.

Starting with a simple case, we adjust the plan structure
and incoming SOC to cause the runtime complexity to in-
crease. We show the runtime complexity by measuring the
amount of time to finish scheduling each activity given that
the previous activities are already in the schedule. Observe
the following four cases in Figure 4. When the scheduler
ran on a synthetic plan with 60 nonparallel activities, at a
high incoming SOC the runtime is linear in n, the number
of activities scheduled (Figure 4a). When the activities were
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Figure 4: Runtime complexity is linear or polynomial depending on problem characteristics.

given preferred times at the end of the plan, so that activi-
ties scheduled in backwards temporal order, the runtime ex-
hibits a small quadratic component as shown in Figure 4b.
When the incoming SOC was below the minimum required
SOC, the problem did indeed become harder, as predicted by
(Chi, Chien, and Agrawal 2019). The plans exhibited saw-
toothing, where each activity had its own separate wakeup,
awake, and shutdown, causing a sawtooth-like pattern of en-
ergy consumption as energy increases while the rover sleeps
and decreases while it is awake (Figure 5). For a plan with
sawtoothing, the third graph shows the runtime conforms to
a function quadratic in n activities (Figure 4¢). In the worst
case, shown in the fourth graph, scarce power and required
preheats exhibit a higher order polynomial form (Figure 4d).
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Figure 5: Sawtoothing, where each activity has its own
wakeup, awake, and shutdown, occurs at low incoming
SOC.

The most realistic case is to have activities schedule in
mostly temporal order. Incoming SOC may vary. Therefore,
the linear case and the quadratic case with sawtoothing are
most likely to appear in sol types.

Runtimes of partial plans (without sawtoothing) Runtimes of partial plans (with sawtoothing)

10 15
-th scheduler invocat

.
S e
:
) “.“i il.gir
00 i III " “l""luuuu
B 3 EE )
tion

Figure 6: Runtimes while creating a schedule with and with-
out sawtoothing

During execution, if every activity finishes early or late
beyond a certain threshold, causing an event to occur as de-
scribed in the Schedule Execution section above, the sched-
uler will reschedule n times: once at the beginning with n

activities, then with n — 1, n — 2, etc. activities. Activities
from earlier in the plan still have to be placed in the sched-
ule, but this takes less time than scheduling, and does not af-
fect the time to schedule following activities. The runtimes
will decline linearly (without sawtoothing) and quadratically
(with sawtoothing) (Figure 6). While the runtime does not
usually exhibit the cubic complexity we would expect from
inspection of the algorithm, using a normal distribution as
a runtime model during execution is still quite unrealistic.
If we must choose a commit window greater than or equal
to the longest expected runtime, the commit window could
be orders of magnitude greater than the shortest and average
runtime during the execution of a non-sawtoothing plan.

Modeling Runtimes for Sol Types

Even a linear or quadratic model, however, is not perfect for
modeling the scheduler runtime of actual rover sol types.
Additional constraints such as heating thermal zones, exe-
cution time windows, and dependencies can either increase
or decrease the time it takes to schedule each activity. Saw-
toothing can still occur, but because of the additional con-
straints, scheduling at a low enough SOC to cause sawtooth-
ing may also cause many activities to fail, resulting in a non-
quadratic runtime. In addition, different plans have different
constraints and degrees of parallelism, so finding a model
that works consistently across all sol types is difficult.

We first describe the Linear model, which uses linear re-
gression to predict the scheduler runtime, with inputs be-
ing the number of committed, scheduled, and failed activi-
ties (predicted based on what happened in the most recently
generated plan), the incoming SOC, the maximum allowed
SOC, the number of activities which must occur at a fixed
time such as communication passes. The results were rea-
sonably accurate for the sol types. Moreover, the coefficients
are all close to the same order of magnitude 3, showing that
each feature chosen for the linear regression was indeed cor-
related to the runtime. However, the data does have a some-
what quadratic shape in certain cases as runtime increases,
and the Linear model could not capture this trend.

A different approach to modeling scheduler runtime dur-
ing execution is to use the actual runtime of the immedi-

3The coefficients were approximately 5.49e—3, 6.56e—4,
—1.11e—3, 1.95e—3, 2.15e—3, —2.52e—3.



Algorithm 1 Linear Runtime Prediction

Input:
A: List of activities in the input plan
O: Last output plan
e: Energy at current time
t: current time
in flation_factor: scalar describing how much longer the ac-
tual scheduler is expected to take than the computer on which
the code is being run
¢cp...ca: coefficients found by linear regression
Qutput:
r: Predicted runtime of the scheduler
: committed + a € A if a was committed in O or starts before ¢
: failed < a € Aif a failed in O

P

r 4+ (co+ c1*|committed_activities| + ca* | failed| 4¢3 *
|schedulable| + c4 * |pinned| + ¢s = €) * in flation_factor

ately previous scheduler invocation as a prediction for the
current scheduler invocation runtime, which we call the Pre-
vious model. This is useful because characteristics such as
number of activities to be scheduled, incoming SOC, heating
activities, and constraints are often consistent from one invo-
cation to the next. This method is more likely to overestimate
than underestimate the runtime (because generally speaking
some activities have executed since the last rescheduling, re-
sulting in fewer activities remaining to schedule), but that is
acceptable because it is preferrable to overestimate sched-
uler runtime (see (Agrawal, Chi, and Chien 2019)). It is pos-
sible for the scheduler runtime to increase over successive
invocations; when this happens it is usually because activi-
ties ran long, causing the SOC to be lower than predicted by
earlier invocations, so more activities sawtooth than before.
| fixed | linear | prev

1.2e5 | —2.2e3 | 2.1e3
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Figure 7: Linear Model is fairly accurate for many cases, but
misses some outliers—greatly underestimating several. The
graph on the right is the result of zooming in on the graph
on the left.

Both the Linear and Previous models (Figure 7 and Figure
8) predict scheduler runtime during execution much better
than a fixed number, because inputs like number of activities
to be scheduled and incoming SOC change over the course
of execution. *Overall, the Linear method predicts scheduler
runtime more accurately than the Previous method. How-

pinned < a € Aif earliest_start_time(a) == latest_start_time(a)
: schedulable <— a € Aifa € A and a € committed, failed, pinned
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Figure 8: Previous Model adapts to different plans well, but
it does not account for variation within the plan. The graph
on the right is the result of zooming in on the graph on the
left.

ever, the Linear model’s accuracy relies on the assumption
that the input plan and other parameters will be similar to
the conditions from which we derived the coefficients by us-
ing linear regression. Therefore, for work beyond the scope
of the next section, the Previous model is still more accurate
than using a fixed prediction, and it may even be better than
Linear in some cases.

Variable Commit Window

An improved model of scheduler runtime enables a more ac-
curate commit window. Compared to a constant, conserva-
tive estimate, this should result in smaller commit windows
whose sizes decrease over the course of execution as more
activities are executed successfully so that there are fewer
activities remaining to schedule.

We show results of setting a variable commit window us-
ing both Previous and Linear models. Because our execution
algorithm does not have a mechanism to address the sched-
uler running longer than estimated, when the scheduler does
run long, we act as if it completed at the end of the com-
mit window. The predictions from the Previous Linear mod-
els are each multiplied by a scale factor so that only 5% of
predictions are expected to be underestimates (also making
the comparison between Previous and Linear more compa-
rable).’

While the variable commit window method (VCW) offers
improvements over a fixed, longer commit window, flexi-
ble execution is often good enough at regaining time from
overly long commit windows. We observe that variable com-
mit windows are especially useful with certain constraints

“Both the Linear and Previous methods require information
from the last invocation of the scheduler; during our simulation
there is always an initial scheduling of the plan before any activi-
ties have started executing, which provides us with a schedule for
Linear and a previous scheduler runtime for Previous. Since the
first invocation does not interact with execution, we do not need
to predict its runtime or set a commit window for it. This will not
be the case on the actual M2020 onboard planner, but we defer a
base-case runtime prediction to future work.

5The scale factor is based on the results from the data depicted
in Figures 7 and 8. When the Linear predictions were each mul-
tiplied by 2.7, only 5% of the Linear predictions were underesti-
mates. When the Previous predictions were multiplied by 1.3, only
5% of the Previous predictions were underestimates.



that FE cannot consider such as execution time ranges, setup
activities, and energy constraints.

Empirical Results with Sol Types

We test the three methods for determining commit windows
in sol types described in the "Modeling Scheduler Runtime”
section earlier: using a fixed commit window based on a
conservative maximum scheduler runtime, a variable com-
mit window based on the previous runtime invocation, and
a variable commit window based on a linear estimate from
characteristics of the plan and execution. We test execution
over six different sol types, four random seeds (which de-
termine the activity durations for execution), five inflation
factors, and four levels of incoming SOC. We use an infla-
tion factor to account for the fact that the scheduling runs are
being done on a much faster laptop to generate the empiri-
cal results. This laptop takes a fraction of a second to gen-
erate a schedule, unlike the M2020 onboard planner which
will is much slower. Each sol type contains between 20 and
50 activities. To make a proper comparison, commit win-
dows and inflation factors scale together: an inflation factor
of 300, for instance, means that the fixed commit window
is 60 seconds, the Linear VCW runtime predictionﬁis scaled
by 300, and the actual runtimes are scaled by 300; propor-
tionately, an inflation factor of 2400 means the fixed commit
window is 480 seconds and predictions and actual runtimes
are multiplied by 2400.

These methods can be used with or without FE. Because
execution without FE does not handle activities running
long, to compare between runs with and without FE, we
truncate the distribution from which “actual” durations are
drawn so that activities do not exceed predicted durations.
The results demonstrate that more accurate (tighter) commit
windows do improve makespan gain. When FE is operating,
the effect of shorter commit windows is lessened, but still
there (Figure 9).

The VCW methods result in a larger fraction of activi-
ties executing successfully at low starting SOC than FE does
(Figure 10). In fact, in a few cases using FE in addition to
VCW results in worse performance due to scheduler subop-
timality.

If the scheduler were given lower CPU priority, it would
have a much longer runtime (indeed in the original rover
flight software design the scheduler was expected to have a
runtime of 3.5 minutes, well more than the final 1 minute es-
timate). The higher inflation factors simulate this case, scal-
ing up both the fixed and variable commit windows. At these
higher inflation factors, the VCW methods have an even
more positive effect on both the makespan and activities ex-
ecuted, shown in Figure 11 and more explicitly in Figure 12
with an inflation factor of 300 .

There are some oddities in these graphs due to outlier
cases. Sometimes a longer commit window is better because
an “event,” as described in the introduction, means that an
activity has finished early or late by more than the commit

SThe Linear VCW runtime prediction is already being multi-
plied by a scaling factor of 2.7 as described at the beginning of the
VCW section; the 300 here is an additional inflation factor.

Comparing CW Methods With and Without FE
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Figure 9: Tighter, more accurate commit windows enable
more makespan gain, with and without FE.
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Figure 10: At low SOC, VCW helps more activities be exe-
cuted more than FE does.

window. If an activity A finishes early by = seconds, and the
commit window is 2z seconds long, rescheduling will not
be triggered; instead, FE might be able to pull the next ac-
tivity B all the way up to when Activity A ended. But if the
commit window were % seconds, and the scheduler runtime
took the entire commit window, Activity B could only be
pulled up to end(A) + 5. However, the data points with ex-
tremely large inflation factors still show that if the maximum
scheduler runtime is even longer than some of the activities’
execution windows, VCW can do more than FE to improve
the schedule throughout execution.

Synthetic Cases Highlighting Shorter Commit
Window

While FE is able to recoup much of the time lost due to a
conservative commit window, it is still myopic while VCW
allows for deliberation and informed activity scheduling,
which is especially beneficial in certain cases.

We construct problems to highlight where shorter com-
mit windows are beneficial. In the following examples, the
fixed commit window is 60 seconds. We use the Previous
model to predict scheduler runtime for the variable commit
window, and we multiply the actual scheduler runtime by an
inflation factor of 300. We do not use the Linear model with
synthetic plans because the Linear Model coefficients were
derived using plan and execution characteristics of the sol






